85 research outputs found

    Distinct regulation of tonsillar immune response in virus infection

    Get PDF
    Cataloged from PDF version of article.Background: The relationships between tonsillar immune responses, and viral infection and allergy are incompletely known. Objective To study intratonsillar/nasopharyngeal virus detections and in vivo expressions of T-cell- and innate immune response-specific cytokines, transcription factors, and type I/II/III interferons in human tonsils. Methods: Palatine tonsil samples were obtained from 143 elective tonsillectomy patients. Adenovirus, bocavirus-1, coronavirus, enteroviruses, influenza virus, metapneumovirus, parainfluenza virus, rhinovirus, and respiratory syncytial virus were detected using PCR. The mRNA expression levels of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2, and Tbet were directly analyzed by quantitative RT-PCR. Results Fifty percentage of subjects reported allergy, 59% had ≥1 nasopharyngeal viruses, and 24% had ≥1 intratonsillar viruses. Tonsillar virus detection showed a strong negative association with age; especially rhinovirus or parainfluenza virus detection showed positive association with IFN-γ and Tbet expressions. IL-37 expression was positively associated with atopic dermatitis, whereas IFN-α, IL-13, IL-28, and Tbet expressions were negatively associated with allergic diseases. Network analyses demonstrated strongly polarized clusters of immune regulatory (IL-10, IL-17, TGF-β, FOXP3, GATA3, RORC2, Tbet) and antiviral (IFN-α, IFN-β, IL-28, IL-29) genes. These two clusters became more distinctive in the presence of viral infection or allergy. A negative correlation between antiviral cytokines and IL-10, IL-17, IL-37, FOXP3, and RORC2 was observed only in the presence of viruses, and interestingly, IL-13 strongly correlated with antiviral cytokines. Conclusions: Tonsillar cytokine expression is closely related to existing viral infections, age, and allergic illnesses and shows distinct clusters between antiviral and immune regulatory genes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    GLANET: Genomic loci annotation and enrichment tool

    Get PDF
    Motivation: Genomic studies identify genomic loci representing genetic variations, transcription factor (TF) occupancy, or histone modification through next generation sequencing (NGS) technologies. Interpreting these loci requires evaluating them with known genomic and epigenomic annotations. Results: We present GLANET as a comprehensive annotation and enrichment analysis tool which implements a sampling-based enrichment test that accounts for GC content and/or mappability biases, jointly or separately. GLANET annotates and performs enrichment analysis on these loci with a rich library. We introduce and perform novel data-driven computational experiments for assessing the power and Type-I error of its enrichment procedure which show that GLANET has attained high statistical power and well-controlled Type-I error rate. As a key feature, users can easily extend its library with new gene sets and genomic intervals. Other key features include assessment of impact of single nucleotide variants (SNPs) on TF binding sites and regulation based pathway enrichment analysis. Availability and implementation: GLANET can be run using its GUI or on command line. GLANET's source code is available at https://github.com/burcakotlu/GLANET. Tutorials are provided at https://glanet.readthedocs.org. © 2017 The Author

    Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes

    Get PDF
    Cataloged from PDF version of article.Background-Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results-We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P <= 5x10(-8)) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions-Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD.(Circulation. 2015;131:536-549. DOI: 10.1161/CIRCULATIONAHA.114.010696.

    Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes

    Get PDF
    BACKGROUND - : Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. METHODS AND RESULTS - : We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. CONCLUSIONS - : Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD

    Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins

    Get PDF
    Motivation: Protein–protein interactions (PPIs) are critical for virtually every biological function. Recently, researchers suggested to use supervised learning for the task of classifying pairs of proteins as interacting or not. However, its performance is largely restricted by the availability of truly interacting proteins (labeled). Meanwhile, there exists a considerable amount of protein pairs where an association appears between two partners, but not enough experimental evidence to support it as a direct interaction (partially labeled)

    PRIMO: an interactive homology modeling pipeline

    Get PDF
    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling

    Designing a course model for distance-based online bioinformatics training in Africa: the H3ABioNet experience

    Get PDF
    Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org), the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge "Introduction to Bioinformatics" course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery±mode learning model was selected for this 3-month course in order to increase access to (mostly) African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016), classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online "question and discussion" forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings.IS

    HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins

    Get PDF
    HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2). We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes

    A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    Get PDF
    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed

    Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host protein-protein interaction networks are altered by invading virus proteins, which create new interactions, and modify or destroy others. The resulting network topology favors excessive amounts of virus production in a stressed host cell network. Short linear peptide motifs common to both virus and host provide the basis for host network modification.</p> <p>Methods</p> <p>We focused our host-pathogen study on the binding and competing interactions of HIV-1 and human proteins. We showed that peptide motifs conserved across 70% of HIV-1 subtype B and C samples occurred in similar positions on HIV-1 proteins, and we documented protein domains that interact with these conserved motifs. We predicted which human proteins may be targeted by HIV-1 by taking pairs of human proteins that may interact via a motif conserved in HIV-1 and the corresponding interacting protein domain.</p> <p>Results</p> <p>Our predictions were enriched with host proteins known to interact with HIV-1 proteins ENV, NEF, and TAT (p-value < 4.26E-21). Cellular pathways statistically enriched for our predictions include the T cell receptor signaling, natural killer cell mediated cytotoxicity, cell cycle, and apoptosis pathways. Gene Ontology molecular function level 5 categories enriched with both predicted and confirmed HIV-1 targeted proteins included categories associated with phosphorylation events and adenyl ribonucleotide binding.</p> <p>Conclusion</p> <p>A list of host proteins highly enriched with those targeted by HIV-1 proteins can be obtained by searching for host protein motifs along virus protein sequences. The resulting set of host proteins predicted to be targeted by virus proteins will become more accurate with better annotations of motifs and domains. Nevertheless, our study validates the role of linear binding motifs shared by virus and host proteins as an important part of the crosstalk between virus and host.</p
    corecore